Design of Safety Valves Design standard: DIN EN ISO 4126-1

The-Safety-Valve.com

Objective of the presentation. Design of Safety Valves – DIN EN ISO 4126-1.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

The objective of the presentation is to show the **design of safety valves** in compliance with ISO 4126-1.

- Standard specifications for the design of safety valves
- Formulas for the design of safety valves
- Factors Influencing the stability in operation

National and international standards. For calculation of safety valves.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

Calculation levels of safety valves

ISO 4126-1	AD 2000 - Merkblatt A2	API 520	ASME VIII
------------	---------------------------	---------	-----------

Calculation levels of inlet pressure loss and back pressure

Design of safety valves | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 3/21

What impact does this have on the user?

Size	 ISO 4126-1 must be applied in the European region for size determination of safety valves
determination	 TRBS is not yet available for specification of the safety valve

	There is no effect on the capacity and function up to a pressure loss of 3%
inlet pressure loss	 Pressure losses >3% must be taken into account in the capacity calculation. The operation may be affected.

What impact does this have on the user?

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

• Effect on the capacity taking the p_{ao}/p_o curve into consideration

This ratio is observed for absolute pressures.

Back pressure

- Capacity minimisation must also be taken into consideration for low set pressures.
- p = 03 bar g (set pressure)
- p_{ao} = 1.013 bar a (ambient pressure)
- p_o = (0.3 barg + 0.1 barg + 1.013 bar a) (pressure in the system to be secured)
- p_{ao} / p₀ = 1.013 bar a / (0.3 barg +0.1 bar g + 1.013 bar a) = 0.72
 >> K_b = 0.81

What parameters are important for the design, and how are they related?

- Coefficient of discharge α_w : (k_{dr} acc. to ISO 4126-1) the rated coefficient of discharge from component testing (often also referred to as α_d)
- Orifice area A₀: actual orifice area
- Substance information medium-dependent substance data
- Operating data: state parameters like pressure and temperature

Coefficient of discharge and rated coefficient of discharge.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

Design of safety valves | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 7/21

Differentiation of media.

Required data on materials.

		Gasses / steams	Liquids	Saturated steam	Superheated team
Set pressure p _{set}	psig	x	x	x	x
Back pressure p _a	psig	х	x	x	x
Temperature T	[°C]	x			x
Mass flow* q _m	[kg/h]	х	x	x	x
Volumetric flow rate* q_v (while operating)	[m³/h]	X	x	x	x
Volumetric flow rate* q_{ν}	[Nm³/h]	x			
Overpressure c	[%]	х	x	x	x
Real gas factor Z	[-]	х			
Molar mass M	[kg/kmol]	x			
Isentropic exponent k	[-]	x			
Density ρ	[kg/m³]		x		
Kinematic viscosity v	[m ² /s]		х		

Design for gasses / steam as per DIN EN ISO 4126-1.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

ISO 4126-1
$$A = \frac{Q_m}{C \cdot K_{dr} \cdot p_0} \cdot \sqrt{\frac{Z \cdot T}{M}}$$

ISO 4126-1

Actual orifice area	A [mm ²]
 Mass flow 	Q _m [kg/h]
 Functional isentropic exponent 	C [-]
 Rated coefficient of discharge 	К _{dr}
Set pressure	p₀ [bar abs]
Temperature	т [К]
Molar mass	M [kg/kmol]
 Real gas factor 	Z [-]

Design for saturated steam as per DIN EN ISO 4126-1.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

ISO 4126-1

- Actual orifice area
- Set pressure
- Functional isentropic exponent
- Mass flow
- Specific volume
- Rated coefficient of discharge

A	[mm [,]	']
p ₀	[bar	abs
С		

Q_m [kg/h]

v [m³/kg]

K_{dr} [m³/kg]

Design for saturated steam as per DIN EN ISO 4126-1.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

ISO 4126-1	
Actual orifice area	A [mm ²]
Set pressure	p _o [bar abs]
Back pressure	p _b [barü]
 Mass flow 	Q _m [kg/h]
Specific volume	v [m³/kg]
 Rated coefficient of discharge 	K _{dr}
 Viscosity correction factor 	κ _ν

Design of safety valves | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 12/21

Inlet pressure loss. Influencing Factors.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

Design of safety valves | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 13/21

Inlet pressure loss. Standards and Codes.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

• A **maximum pressure loss of 3%** from the vessel to the safety valve is permissible for the most common international standards and codes.

ISO 4126-9 Chapter 6.2

Unless otherwise specified by national codes or regulations, the inlet line shall be so designed that the total pressure drop to the valve inlet does not exceed 3 % of the set pressure of the safety device,...

Calculation.

- λ = Pipe friction coefficient (pipeline)
- I/d = Length and diameter of a pipe
- ζ = Friction coefficient (components)
- ρ = Density
- w = Speed

Inlet pressure loss.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

The following **measures prevent malfunctions** that are caused by an inadmissible **inlet pressure loss**:

- Reduction of the flow rate through
 - increasing the pipe diameter
 - reducing the mass flow through a smaller valve
 - reducing the mass flow through a lift stopper
 - reducing the mass flow through an O-ringdamper

Inlet pressure loss.

- Reduction of the flow rate through
 - shorter inlet pipeline
 - low-resistance connection to the vessel

Inlet pressure loss.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

Reduction of the flow rate is more effective than reduction of the flow resistance

Back pressure. Definition

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

Design of safety valves | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 19/21

Back pressure – stability. Setting.

1. Objectives | 2. Codes and standards | 3. Design | 4. Inlet pressure loss | 5. Back pressure

The following measures prevent malfunctions resulting from the back pressure:

Constant back pressure

- settings to differential set pressure (CDTP)
- use of stainless steel bellows
- Variable back pressure
 - use of stainless steel bellows

Design of Safety Valves Thank you for your attention.

The-Safety-Valve.com