Design of Safety Valves
Design standard: ASME VIII / API 520
Objectives of this Presentation. Design of Safety Valves: ASME VIII / API 520.

The objective of the presentation is to show the design of safety valves in compliance with ASME VIII / API 520

- Standard specifications for the design of safety valves
- Formulas for the design of safety valves
- Factors Influencing the stability in operation
National and international standards. For calculation of safety valves.

Calculation levels for safety valves

- ISO 4126-1
- AD 2000 – Merkblatt A2
- API 520
- ASME VIII

Calculation levels of inlet pressure loss and back pressure

- ISO 4126-9
- AD 2000 – Merkblatt A2

Chapter 7 + 9

Chapter 6
National and international standards. For calculation of safety valves.

- ISO 4126-1 must be applied in the European region for size determination of safety valves
- TRBS is not yet available for specification of the safety valve

Size determination

- There is no effect on the capacity and function up to a pressure loss of 3%
- Pressure losses >3% must be taken into account in the capacity calculation. The operation may be affected.

Inlet pressure loss
What impact does this have on the user?

- Effect on the capacity taking the p_{ao}/p_o curve into consideration
- This ratio is observed for absolute pressures.

- Capacity minimisation must also be taken into consideration for low set pressures.

- $p = 0.03$ bar g (set pressure)
- $p_{ao} = 1.013$ bar a (ambient pressure)
- $p_o = (0.3$ barg $+ 0.1$ barg $+ 1.013$ bar a) (pressure in the system to be secured)
- $p_{ao} / p_o = 1.013$ bar a / $(0.3$ barg $+ 0.1$ barg $+ 1.013$ bar a) = 0.72
- $>> K_b = 0.81$
What parameters are important for the design and how are they related?

- **Coefficient of discharge \(\alpha_{w} \):**
 the rated coefficient of discharge from component testing (often also referred to as \(\alpha_{d} \))

- **Orifice area \(A_{0} \):**
 actual orifice area

- **Substance information**
 medium-dependent substance data

- **Operating data:**
 state parameters like pressure and temperature
Coefficient of discharge and rated coefficient of discharge.

1. Objectives
2. Codes and standards
3. Design
4. Inlet pressure
5. Back pressure

German Code

<table>
<thead>
<tr>
<th>VdTÜV Merkblatt SV 100, § 3.3.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\alpha = \frac{q_{\text{measured}}}{q_{\text{theoretical}}}]</td>
</tr>
<tr>
<td>[\alpha_w = 0.9 \times \alpha]</td>
</tr>
</tbody>
</table>

American Code

<table>
<thead>
<tr>
<th>ASME-Code Sec.VIII, Div. 1, UG-131 (e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[K_d = \frac{q_{\text{measured}}}{q_{\text{theoretical}}}]</td>
</tr>
<tr>
<td>[K = 0.9 \times K_d]</td>
</tr>
</tbody>
</table>

- \(q_{\text{measured}} \): actual measured \(q_m \)
- \(q_{\text{theoretical}} \): calculated \(q_m \)
- \(\alpha \) or \(K_d \): coefficient of discharge
- \(\alpha_d \) or \(K \): rated coefficient of discharge
- 0.9: correction factor
Differentiation of media.

Medium

- Steams/ gasses
 - Subcritical
 - Supercritical
- Liquids
 - Low viscosity
 - High viscosity
 - Saturated steam
 - Superheated steam
 - Liquid phase
 - Gaseous Phase
- Steam
 - Two-phase flow
Coefficient of discharge and rated coefficient of discharge.

<table>
<thead>
<tr>
<th></th>
<th>Gasses / steams</th>
<th>Liquids</th>
<th>Saturated steam</th>
<th>Superheated steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set pressure p_{set}</td>
<td>psig</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Back pressure p_a</td>
<td>psig</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Temperature T</td>
<td>[°C]</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Mass flow* q_m</td>
<td>[kg/h]</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Volumetric flow rate* q_v (while operating)</td>
<td>[m³/h]</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Volumetric flow rate* q_v</td>
<td>[Nm³/h]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overpressure c</td>
<td>[%]</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Real gas factor Z</td>
<td>[-]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molar mass M</td>
<td>[kg/kmol]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isentropic exponent k</td>
<td>[-]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density ρ</td>
<td>[kg/m³]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinematic viscosity ν</td>
<td>[m²/s]</td>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Denotes units for gases and steam only.
Design for gases/steam as per ASME VIII.

\[A = \frac{W}{C \cdot K \cdot P} \cdot \sqrt{\frac{Z \cdot T}{M}} \]

- **Code**: A = \(\frac{W}{C \cdot K \cdot P} \cdot \sqrt{\frac{Z \cdot T}{M}} \)
- **Medium data**: medium data – components
- **Process data**: process data – components
- **Flow coefficient**: flow coefficient – components
Design for gasses/steam as per API 520 vs. ASME VIII.

API

\[
A = \frac{W}{C \cdot K_d \cdot P_1 \cdot K_b \cdot K_c} \cdot \sqrt{\frac{T \cdot Z}{M}}
\]

ASME

\[
A = \frac{W}{C \cdot K \cdot P_1} \cdot \sqrt{\frac{T \cdot Z}{M}}
\]

ASME/API

\[
A_{ASME} \times K \geq A_{API} \times K_d
\]
Objectives
- Actual orifice area
- Mass flow
- Functional isentropic exponent
- Rated coefficient of discharge
- Relieving pressure
- Temperature
- Molar mass
- Real gas factor

Codes and standards
- ASME VIII

Design
- Inlet pressure
- Back pressure

Inlet pressure

\[
A = \frac{W}{C \cdot K \cdot P_1} \cdot \sqrt[3]{\frac{T \cdot Z}{M}}
\]

ASME VIII

<table>
<thead>
<tr>
<th>Actual orifice area</th>
<th>A [inch²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass flow</td>
<td>W [lb/h]</td>
</tr>
<tr>
<td>Functional isentropic exponent</td>
<td>C [-]</td>
</tr>
<tr>
<td>Rated coefficient of discharge</td>
<td>K</td>
</tr>
<tr>
<td>Relieving pressure</td>
<td>P₁ [psi g]</td>
</tr>
<tr>
<td>Temperature</td>
<td>T [°F]</td>
</tr>
<tr>
<td>Molar mass</td>
<td>M [kg/kmol]</td>
</tr>
<tr>
<td>Real gas factor</td>
<td>Z [-]</td>
</tr>
</tbody>
</table>
Orifices as per API RP 526 and ASME VIII (Steam and Gasses).

(Type 526, orifice and discharge coefficient K individual for LESER types)

<table>
<thead>
<tr>
<th>Designation</th>
<th>API Effective Orifice Area [sq in]</th>
<th>API Coefficient of discharge Kd</th>
<th>ASME Actual Orifice Area [sq in]</th>
<th>ASME coefficient of discharge K</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.110</td>
<td></td>
<td>0.239</td>
<td>0.239</td>
</tr>
<tr>
<td>E</td>
<td>0.196</td>
<td></td>
<td>0.239</td>
<td>0.239</td>
</tr>
<tr>
<td>F</td>
<td>0.307</td>
<td></td>
<td>0.394</td>
<td>0.394</td>
</tr>
<tr>
<td>G</td>
<td>0.503</td>
<td></td>
<td>0.43</td>
<td>0.616</td>
</tr>
<tr>
<td>H</td>
<td>0.785</td>
<td>0.975</td>
<td>0.975</td>
<td>0.975</td>
</tr>
<tr>
<td>J</td>
<td>1.287</td>
<td></td>
<td>1.58</td>
<td>1.58</td>
</tr>
<tr>
<td>K</td>
<td>1.838</td>
<td></td>
<td>2.25</td>
<td>2.25</td>
</tr>
<tr>
<td>L</td>
<td>2.853</td>
<td></td>
<td>3.48</td>
<td>3.48</td>
</tr>
<tr>
<td>M</td>
<td>3.60</td>
<td></td>
<td>4.43</td>
<td>4.43</td>
</tr>
<tr>
<td>N</td>
<td>4.34</td>
<td></td>
<td>5.30</td>
<td>5.30</td>
</tr>
<tr>
<td>P</td>
<td>6.38</td>
<td></td>
<td>7.79</td>
<td>7.79</td>
</tr>
<tr>
<td>Q</td>
<td>11.05</td>
<td></td>
<td>13.55</td>
<td>13.55</td>
</tr>
<tr>
<td>R</td>
<td>16.00</td>
<td></td>
<td>19.48</td>
<td>19.48</td>
</tr>
<tr>
<td>T</td>
<td>26.00</td>
<td></td>
<td>31.75</td>
<td>31.75</td>
</tr>
</tbody>
</table>

Design of safety valves – ASME VIII / API 520 | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 13/27
Design for steam as per API 520 vs. ASME VIII.

API

\[
A = \frac{W}{51.5 \cdot P_1 \cdot K_d \cdot K_b \cdot K_c \cdot K_N \cdot K_{SH}}
\]

ASME

\[
A = \frac{W}{51.5 \cdot K \cdot p_0 \cdot K_N \cdot K_{SH}}
\]

ASME/API

\[
A_{\text{ASME}} \times K \geq A_{\text{API}} \times K_d
\]

Design of safety valves – ASME VIII / API 520 | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 14/27
Design for saturated steam as per ASME VIII.

1. Objectives
2. Codes and standards
3. Design
4. Inlet pressure
5. Back pressure

ASME VIII

\[
A = \frac{W}{51.5 \cdot K \cdot p_0 \cdot K_N \cdot K_{SH}}
\]

- Actual orifice area
- Pressure in pressure chamber
- Mass flow
- Rated coefficient of discharge
- Napier correction factor
- Superheated steam correction factor

A [in²]
p₀ [bar abs]
W [lb/h]
K
K_N
K_SH
Orifices as per API RP 526 and ASME VIII (Saturated Steam).

1. **Objectives**
2. **Codes and standards**
3. **Design**
4. **Inlet pressure**
5. **Back pressure**

(Type 526, orifice and discharge coefficient K individual for LESER types)

<table>
<thead>
<tr>
<th>Designation</th>
<th>API Effective Orifice Area [sq in]</th>
<th>API Coefficient of discharge Kd</th>
<th>ASME Actual Orifice Area [sq in]</th>
<th>ASME coefficient of discharge K</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.110</td>
<td></td>
<td></td>
<td>0.239</td>
</tr>
<tr>
<td>E</td>
<td>0.196</td>
<td></td>
<td></td>
<td>0.239</td>
</tr>
<tr>
<td>F</td>
<td>0.307</td>
<td></td>
<td></td>
<td>0.394</td>
</tr>
<tr>
<td>G</td>
<td>0.503</td>
<td></td>
<td></td>
<td>0.616</td>
</tr>
<tr>
<td>H</td>
<td>0.785</td>
<td>0.975</td>
<td>0.975</td>
<td>1.58</td>
</tr>
<tr>
<td>J</td>
<td>1.287</td>
<td></td>
<td></td>
<td>2.25</td>
</tr>
<tr>
<td>K</td>
<td>1.838</td>
<td>0.975</td>
<td>0.975</td>
<td>3.48</td>
</tr>
<tr>
<td>L</td>
<td>2.853</td>
<td></td>
<td></td>
<td>4.43</td>
</tr>
<tr>
<td>M</td>
<td>3.60</td>
<td></td>
<td></td>
<td>5.30</td>
</tr>
<tr>
<td>N</td>
<td>4.34</td>
<td></td>
<td></td>
<td>7.79</td>
</tr>
<tr>
<td>P</td>
<td>6.38</td>
<td></td>
<td></td>
<td>13.55</td>
</tr>
<tr>
<td>Q</td>
<td>11.05</td>
<td></td>
<td></td>
<td>19.48</td>
</tr>
<tr>
<td>R</td>
<td>16.00</td>
<td></td>
<td></td>
<td>31.75</td>
</tr>
<tr>
<td>T</td>
<td>26.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

API Effective Orifice Area \([\text{sq in}]\)

API Coefficient of discharge Kd = 0.975

ASME Actual Orifice Area \([\text{sq in}]\) = \(\text{Designation} \times 0.801\)

Notes:
- Orifices as per API RP 526 and ASME VIII (Saturated Steam).
- Design of safety valves – ASME VIII / API 520 | LESER GmbH & Co. KG | 01.06.2018 | Rev. 00 | 16/27
API sizing vs. ASME VIII sizing. (Liquids).

1. **Objectives**
2. **Codes and standards**
3. **Design**
4. **Inlet pressure**
5. **Back pressure**

API

\[
A = \frac{W}{38 \cdot K_d \cdot K_W \cdot K_c \cdot K_V} \cdot \sqrt{\frac{1}{p_1 - p_2}}
\]

ASME

\[
A = \frac{W}{2407 \cdot K \cdot \sqrt{\mu_0 - p_{a0}}} \cdot w
\]

ASME/API

\[A_{ASME} \times K \geq A_{API} \times K_d\]
Design equation for liquids as per API 520.

\[A = \frac{W}{38 \cdot K_d \cdot K_w \cdot K_c \cdot K_v} \cdot \sqrt{\frac{G}{p_1 - p_2}} \]

API

- Actual orifice area
- Pressure in pressure chamber
- Back pressure
- Mass flow
- Specific density
- Rated coefficient of discharge
- Correction factor for bellows
- Correction factor for bursting disc
- Correction factor for viscosity

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>in²</td>
</tr>
<tr>
<td>p₁</td>
<td>psi a</td>
</tr>
<tr>
<td>p₂</td>
<td>psi g</td>
</tr>
<tr>
<td>Q</td>
<td>US gpm</td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>K_d</td>
<td></td>
</tr>
<tr>
<td>K_w</td>
<td></td>
</tr>
<tr>
<td>K_c</td>
<td></td>
</tr>
<tr>
<td>K_v</td>
<td></td>
</tr>
</tbody>
</table>
Orifices as per API RP 526 and ASME VIII (Saturated Steam).

(Type 526, orifice and discharge coefficient K individual for LESER types)

<table>
<thead>
<tr>
<th>Designation</th>
<th>API Effective Orifice Area [sq in]</th>
<th>API coefficient of discharge Kd</th>
<th>ASME Actual Orifice Area [sq in]</th>
<th>ASME coefficient of discharge K</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>0.110</td>
<td></td>
<td>0.239</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>0.196</td>
<td></td>
<td>0.239</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>0.307</td>
<td></td>
<td>0.394</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.503</td>
<td></td>
<td>0.616</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>0.785</td>
<td></td>
<td>0.975</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>1.287</td>
<td>0.65</td>
<td>1.58</td>
<td>x 0.579</td>
</tr>
<tr>
<td>K</td>
<td>1.838</td>
<td></td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>2.853</td>
<td></td>
<td>3.48</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>3.60</td>
<td></td>
<td>4.43</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>4.34</td>
<td></td>
<td>5.30</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>6.38</td>
<td></td>
<td>7.79</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td>11.05</td>
<td></td>
<td>13.55</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>16.00</td>
<td></td>
<td>19.48</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>26.00</td>
<td></td>
<td>31.75</td>
<td></td>
</tr>
</tbody>
</table>
Inlet pressure loss. Influencing factors.

\[p_2 = p_1 \]
\[\Delta p = 0 \]

Valve is closed

\[p_2 = p_1 - \Delta p \]
\[\Delta p > 0 \]

Valve is open
Inlet pressure loss. Standards and bodes.

- (Type 526, orifice aA maximum pressure loss of 3% between the vessel and the safety valve is permissible for the most common international standards and codes.

- **API 520 Part II (08.2003), 4.2.2**
 “When a pressure relief valve is installed on a line directly connected to a vessel, the total non-recoverable pressure loss between the protected equipment and the pressure relief valve should not exceed 3 percent except as permitted in 4.2.3 for pilot-operated pressure relief valve.”
Calculation. (Only calculated as per AD and ISO).

\[\Delta p = (\lambda \cdot \frac{l}{d} + \sum \zeta) \cdot \frac{\rho}{2} \cdot w^2 \]

- \(\lambda \) = Pipe friction coefficient (pipeline)
- \(l/d \) = Length and diameter of a pipe
- \(\zeta \) = Friction coefficient (components)
- \(\rho \) = Density
- \(w \) = Speed
Inlet pressure loss.

The following *measures prevent malfunctions* that are caused by an inadmissible *inlet pressure loss*:

- **Reduction of the flow rate through**
 - increasing the pipe diameter
 - reducing the mass flow through a smaller valve
 - reducing the mass flow through a lift stopper
 - reducing the mass flow through an O-ring-damper

- **Reduction of the flow rate through**
 - shorter inlet pipeline
 - low-resistance connection to the vessel
Inlet pressure loss. (Only calculated as per AD and ISO).

Reduction of the flow rate is more effective than reduction of the flow resistance

\[\Delta p = (\lambda \cdot \frac{l}{d} + \sum \zeta) \cdot \frac{\rho}{2} \cdot w^2 \]

Reduction of flow resistance

Reduction of the flow rate (w)

Reduction of the pressure loss (%)
Back pressure. Definition.

Exists only in the outlet while the safety valve blows off. It is dependent on the flow loss in the discharge line.

Back pressure = built-up back pressure – external pressure

Built-up back pressure

External back pressure

Constant

Variable

Exists permanently in the outlet system. The external back pressure is dependent on the blow-off of the safety valve.
The following measures prevent malfunctions resulting from the back pressure:

- **Constant back pressure**
 - settings to differential set pressure (CDTP)
 - use of stainless steel bellows

- **Variable back pressure**
 - use of stainless steel bellows
Design of Safety Valves
Thank you for your attention.